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Measurements of Entanglement and
a Quantum de Finetti Theorem

R. L. Hudson1

The problem of defining a natural measure of entanglement of mixed states on tensor
products is considered from the point of view of a quantum de Finetti theorem for
Bosons.
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1. INTRODUCTION

Consider a Hilbert space tensor productH = H1 ⊗H2 providing the quantum
theoretical description of a bipartite composite physical system S = S1 × S2. A
pure state of S is represented by a unit vector ψ ∈ H. If ψ is a product vector, ψ =
ψ1 ⊗ ψ2, the state is said to be unentangled; if not it is entangled. Representing
the state alternatively by a density operator (that is, nonnegative operator of unit
trace on H) ρ , it is evident that a necessary condition for unentanglement is that
ρ is the tensor product operator

ρ = ρ1 ⊗ ρ2 (1)

of density operators ρ1 on H1 and ρ2 on H2, respectively. Indeed, since ρ =
|ψ〉〈ψ | is the projector onto the one-dimensional subspace spanned by ψ we
have ρ1 = |ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2|. Conversely if a pure state density oper-
ator ρ satisfies the factorization condition (1) then, since for any density opera-
tor σ, tr σ 2 ≤ 1 with equality if and only if the corresponding state is pure, we
have

1 = tr ρ2 = tr (ρ1 ⊗ ρ2)2 = tr
(
ρ2

1 ⊗ ρ2
2

) = tr ρ2
1 tr ρ2

2 ≤ 1,

so that it follows that ρ1 and ρ2 must represent pure states. Hence (1) is a necessary
and sufficient condition for a pure state to be unentangled; we take it as the definition
of unentanglement also for mixed states.
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Consider a possibly entangled pure state ω represented by the unit vector ψ

and by the density operator ρ = |ψ〉〈ψ |. It is generally agreed that an appropriate
measure of the degree of entanglement of ω is given by

ε(ω) = S{tr H2 [ρ]}.
Here tr H2 [ρ] is the partial trace of the density operator ρ over the Hilbert space
H2, that is the unique density operator ρ1 on H1 such that, for every bounded
operator T on H1,

tr(ρ1T ) = tr{ρ(T ⊗ 1 H2 )}
where the trace on the left is over H1 and that on the right is over H, and S{σ }
denotes the von Neumann entropy

S{σ } = −tr{σ ln σ }
of the density operator σ . For example ε(ω) vanishes if ω is unentangled and attains
its maximum value ln d (in the case when dimH1 = d is finite and dimH2 ≥ d)
where the unit vector ψ has the maximally entangled form

ψ = d−1
d∑

j=1

φ j ⊗ χ j

where the φ j are orthonormal vectors in H1 and the χ j are orthonormal vectors in
H2. More generally, if ψ is given in terms of such orthonormal sets by

ψ =
d∑

j=1

λ jφ j ⊗ χ j

where the λ j are nonnegative numbers whose sum is 1, then

ε(ω) = −
d∑

j=1

λ j ln λ j .

It is evident from this formula that ε(ω) could be defined equally well by

ε(ω) = S{tr H1 [ρ]}.
No such agreement attends the definition of a measure of entanglement for

mixed states. The natural definition, that for a mixed state ω which is a convex
combination of pure states,

ω =
N∑

j=1

λ jω j ,
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ε(ω) =
N∑

j=1

λ jε(ω j ), (2)

fails because the decomposition into a convex combination of pure states is
nonunique. Majewski (2001) and others have proposed to define ε(ω) as the infi-
mum of the right-hand side of (2) over all such decompositions of ω. Our purpose
in this note is to advocate a change of point of view to this question, based on a
certain quantum de Finetti theorem (Hudson and Moody, 1976) which, as already
noted (Hudson, 1981) has a bearing on the question of the nonuniqueness of the
resolution of a mixed state into a convex combination of pure states. The use of the
associated notion of indistinguishability in physics has been strongly advocated
by Bach (1997).

2. CLASSICAL AND QUANTUM DE FINETTI THEOREMS

Following de Finetti (1937), a sequence of random variables (Xn)n∈N on
a common classical probability space is called indistinguishable if for all n ∈
N, all choices of distinct j1, j2, . . . , jn , n ∈ N and all choices of permutation π

of {1, 2, . . . , n} the joint probability distribution P j1, j2,..., jn of X j1 , X j2 , . . . , X jn
is identical to P jπ (1), jπ (2),..., jπ (n) . Thus an exchangeable sequence is characterized
by a sequencence of probability distributions (Pn)n∈N, where Pn = P1,2,...,n is a
distribution on R

n satisfying the following conditions:

• Each Pn is symmetric, that is, for each permutation π we have Pn = Pn ◦ π

where π acts on R
n by permuting coordinates.

• The sequence (Pn)n∈N is consistent, that is for each n ∈ N and each Borel
subset A of R

n we have

Pn(A) = Pn+1(A × R).

Conversely using the Kolmogorov consistency theorem, it is easily seen that
every consistent symmetric sequence of probability measures defines a correspond-
ing sequence of exchangeable random variables. De Finetti’s famous theorem [de
Finetti, 1937] can be stated in the language of such sequences as follows.

Theorem 1. Let there be given a symmetric consistent sequence of probability
distributions (Pn)n∈N. Then there exists a unique probability measure P on the
σ -field F of subsets of the set P1 of probability distributions on R generated by
the functions

P1 � P �→ P(A)

where A is a Borel subset of R, such that, for arbitrary n ∈ N,
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Pn =
∫

P∈P1

(⊗nP) P (dP),

where ⊗n P denotes the product probability measure on R
n of n copies of P.

A quantum analogue of this theorem (Hudson and Moody, 1976) is easily
formulated. Let there be given a Hilbert space H and, for each n ∈ N, a density
operator ρn on the tensor product ⊗nH satisfying the following conditions:

• symmetry: for each permutation π of {1, 2, . . . , n},
UπρnU−1

π = ρn (3)

where Uπ denotes the unitary action of the permutation on ⊗nH which
permutes the components of product tensors.

• consistency: for each n ∈ N and each bounded operator T on ⊗nH we
have

tr ρnT = tr{ρn+1(T ⊗ 1H)}
where the trace on the left is over ⊗nH while that on the right is over
⊗n+1H.

Denote by D the set of density operators on H and by F the σ -field of subsets
of D generated by the functions

D � ρ �→ tr ρT

where T is a bounded operator on H. Then the natural analog of Theorem 1 is the
following:

Theorem 2. Let there be given a symmetric consistent sequence of density op-
erators (ρn)n∈N. Then there exists a unique probability measure P on (D, F) such
that for each n ∈ N

ρn =
∫

ρ∈D
(⊗nρ)P(dρ).

For a proof of Theorem 2 see (Hudson and Moody, 1976). A closely related but
more abstract C∗-algebraic version of this theorem was proved earlier by Stφrmer
(1969).

We now describe a corollary of Theorem 2 which has no classical analogue.
We say that a density operator ρn on ⊗nH is Bose-symmetric if instead of (3) above
it satisfies

Uπρn = ρn
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for every permutation π of {1, 2, . . . , n}. Equivalently ρn is supporeted by the
symmetric sector

⊗n
symH =

(
(n!)−1

∑
π

Uπ

)
(⊗nH)

of the tensor product ⊗nH. Every Bose-symmetric density operator is symmetric
in the sense of (3).

We denote by E(D) the set of extreme points of the convex setD; equivalently
E(D) is the set of one-dimensional projectors

E(D) = {|ψ〉〈ψ | : ψ ∈ H, ‖ψ‖ = 1}.

Theorem 3. Let the consistent sequence of density operators (ρn)n∈N be
Bose-symmetric. Then the probability measure P of Theorem 2 is supported by
E(D).

Thus every Bose-symmetric consistent sequence (ρn)n∈N is uniquely express-
ible in the form

ρn =
∫

ρ∈E(D)
(⊗nρ)P(dρ). (4)

3. MEASURES OF ENTANGLEMENT OF MIXED STATES

We consider again the Hilbert space tensor productH = H1 ⊗ H2 describing
a composite quantum system. For each n ∈ N there is a natural isomorphism

⊗nH ≡ (⊗nH1) ⊗ (⊗nH2)

which permutes the order of product vectors appropriately, which we use to identify
these Hilbert spaces. Given an unentangled pure state described by the product unit
vector ψ = ψ1 ⊗ ψ2 we evidently have

⊗nψ = (⊗nψ1) ⊗ (⊗nψ2)

so that the corresponding multiparticle state described by the unit vector ⊗nψ is
also unentangled. Now consider an entangled pure state ω with corresponding unit
vector ψ , so that

ε(ω) = S{trH2 [ρ]}
where ρ = |ψ〉〈ψ |. For the pure multiparticle product state ⊗nω with unit vector
⊗nψ we have

ε(⊗nω) = S{tr ⊗nH2 [⊗nρ]}
= S{⊗n(tr H2 [ρ])}
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=
n∑

j=1

S{tr H2 [ρ]}

= nε(ω)

where we used the well-known identity

S{ρ1 ⊗ ρ2} = S{ρ1} + S{ρ2}.
Thus the entanglement measure per particle n−1ε(⊗nω) of the multiparticle state is
independent of n. This seems to be an intuitively well-founded principle. Note that
it is implicit in this principle that the particles are Bosons, so that ⊗nψ describes
an allowable multiparticle state.

Finally let us consider mixed states. We wish to define the entanglement mea-
sure in such a way as to respect this principle. We immediately have to face the
problem that in general the product state ⊗nω of a mixed one-particle state ω vio-
lates Boson statistics. For example ifH is two dimensional, with orthonormal basis
(ψ1, ψ2), and ω is described by the density operator λ|ψ1〉〈ψ1| + (1 − λ)|ψ2〉〈ψ2|
with 0 < λ < 1

2 then ⊗2ω is described by the density operator on ⊗2H
ρ = λ2|ψ1 ⊗ ψ1〉〈ψ1 ⊗ ψ1| + (1 − λ)2|ψ2 ⊗ ψ2〉〈ψ2 ⊗ ψ2|

+ λ(1 − λ)(|ψ1 ⊗ ψ2〉〈ψ1 ⊗ ψ2| + |ψ2 ⊗ ψ1〉〈ψ2 ⊗ ψ1|)
and it is evident that U(1,2)ρ �= ρ even though U(1,2)ρU−1

(1,2) = ρ. Thus, assuming
Boson statistics, there is no canonical way of embedding the one-particle state
ω in a hierarchy of multiparticle states. Instead we must consider that all hierar-
chies based on the given one particle state which satisfy Boson statistics and the
consistency principle are equally valid. A consequence is that it is not possible
to define a canonical measure of entanglement for a mixed single-particle state.
Instead we expect to be able to define such a measure only for a given embedding
in a Boson-symmetric consistent hierarchy (ωn)n∈N.

Theorem 3 tells us how to do this. Representing each state ωn by the density
operator ρn , by Theorem 3 we can represent the sequence (ρn)n∈N in the form (4).
The entanglement measure per unit particle of each multiparticle state can then be
defined by

n−1ε(ωn) = n−1
∫

ρ∈E(D)
ε(ω⊗nρ)P(dρ)

where ω⊗nρ is the pure multiparticle state corresponding to the density operator
⊗nρ . In particular the entanglement measure of the one-particle state ω is given
in terms of pure state measures of entanglement by

ε(ω) =
∫

ρ∈E(D)
ε(ωρ)P(dρ).
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